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ABSTRACT 

An advanced  design  and  implementation of a Control Architecture for Long Range Autonomous 
Planetary  Rovers is presented  using a hierarchical  top-down  task decomposition, and  the common 
structure of each design is presented  based on feedback control theory. Graphical programming is 
presented  as a common intuitive languague  for  the  design  when a large design  team is composed of 
managers, architecture designers, engineers, programmers,  and  maintenance personnel. The whole 
design of  the control architecture consists in  the c1as;ic control concepts of cyclic data processing 
and event-driven reaction to achieve all  the  reasoning  and  behaviors needed. For this purpose, a 
commercial graphical tool is presented  that includes !he mentioned control capabilities. Messages 
queues are used for inter-communication among  control functions, allowing Artificial Intelligence 
(AI) reasoning techniques based  on  queue manip~~lation. Experimental results show a highly 
autonomous control system  running  in  real  time  on top the JPL micro-rover Rocky 7 controlling 
simultanously several robotic devices. This paper  validates  the  sinergy  between Artificial 
Intelligence and classic control concepts in having an advanced Control Architecture for Long 
Range  Autonomous  Planetary  Rovers 

1. Introduction 

A highlv  autonomous  rover is desired  in a planetarv exploration mission. The human  on  ground  only 
needs  appropriately  abstracted state and status feedback in the  telemetry down link. Thus, time 
delays  and  temporary loss of communications to  Earth  are  not a problem because  no  real time 
control loops are closed via the  up/down link. This also reduces  the power consumption of rover 
subsystems like telecommunication  and  makes Inore resources  available for the actual locomotion. 

Control Architectures  are  key elements to identify, define, and implement all the control aspects 
needed  to achieve the  requiered autonomy. Then from the last decade, definition and  design of 
control architectures  have  been of  major  interest i n  thc  research  field of autonomous mobile robots 
[7][10][11][12][19]  but  however  very little have  been done for a high challenging scenario. This 
paper  is  pionner  in  suggesting  tools  and  procedures to design, implement, and maintain control 
architectures for a highly  complex  mobile  robot  as a future Long Range Autonomous Planetan, 
Rover  [1][23]. 
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This paper covers three phases  of  building a complete control architecture for Long Range 
Autonomous Space Rovers. The first phase is to build a Functional Control Architecture defining 
what are the needed control functions and interactions among them. Second phase is to build an 
Operational Control Architecture defining where all these control functions (either on-board or on- 
ground) are located to achieve the desired control autonomy for a space scenario. An Operational 
Control Architecture also defines extra operational support functions in addition to the control ones. 
The last design  phase is to build an Implementation Control Architecture defining how to implement 
(software, hardware,  or  human intervention) all the control and operation support functions. 

This paper presents frameworks, procedures, and an advanced tool to support the design of each type 
of control architecture and the transition among  them for a Long Range Autonomous Space Rover. 
We  used a graphical programming for the  design  of  the control architecture as a common and 
intuitive languague for a design team composed of managers, architecture designers, engineers, 
programmers,  and maintenance personnel. Graphical editors of Control Shell [8] are used for such 
graphical  programming.  In addition, Control Shell provides a real-time software framework for the 
implementation, debugging, maintenance of all control functions and interactions among  them 
defined in the design phase. 

Chapter 2 describes the Functional Control Architecture for a Long Range Scientific Mars Rover, 
defining first an Integrated Control Architecture (ICA) to put the Planetary Rover Control 
Architecture into the context of the overal planetary exploration scenario. Later objectives and State 
of the Art  of Control Architectures for Mobile Robots are given  and the Mobile Robot Control 
Architecture  (MORCA) is defined  as the baseline for the Functional Control Archtecture of a Long 
Range Scientific Mars Rover. Chapter 3 describes the Operational Control Architecture for a highly 
and  realistic  autonomous  planetary rover. Finite State Machines and Data Flow Diagrams are shown 
for the design of this architecture using Control Shell toolkit. Chapter 4 describes the basic approach 
for the  Implementation Control Architecture and Chapter 5 gives experimental result with the JPL 
micro-rover rocky7 when executing autonomously a high level task. 

2. Definition of the  Functional  Control  Architecture  for  a  Space  Rover 

The Functional Control Architecture specifies what are the  needed control functions and interactions 
among  them. Creating this architecture is the first phase of the design. 

2.1 Integrated  Control  Architecture  (ICA) 

Following  the  top-down  design approach, we first define the Integrated Control Architecture (ICA) 
to support general  space scenarios dealing with  several cooperative elements such as robotic arms, 
orbiters, landers, and  planetary rovers. The major characteristics of ICA are: 

0 contains the functional control architectures of all the space elements that  take  part fully or 
partially of a space mission, 

0 a common  mission layer is defined on top of all the element control architectures. The common 
mission  layer  has  as input a common  mission  that is decomposed  (planned or scheduled) into task 
commands for each space element. The global  mission layer controls the execution of the space 
mission, for example controlling the sequence  of tasks (dispatching), 

0 allows  the  placement  of control functions of one space element on different space element in order 
to achieve optimal overall performance, 

0 shows the communication among the control functions. 
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The definition of these interactions among control functions in different elements play  an important 
role in  a  space mission based  on  planetary rovers. Interactions are needed  when some elements are in 
a better position to carry out control functions of other elements. For example a  planetary rover is in 
better position  than  a lander to carry  out landing functions in real time, uplinkmg either relative 
positions  and attitude between lander and landing site or landing trajectories. 

The main  apportation of the Integrated Control Architecture (ICA) to this paper is to emphasize that 
the functional control architecture of  a  planetary  rover  has to be  open to interact with other space 
elements. 

Mission Mission 
Status f ! Command 

I Mission Layer 1 
I I 

0 
A 4 A R2 L L 0 

A1 A1 R1 Navig.  Navig. ' Navig.  Navig. 4 Navig. 
Task  Task R1 R 2  Comds Status  Comds ,R20 Status  Comds 
Status Cmvnands Status  Corn&  Status IOR2 Navig.  Navig.  Navig. 

I I 

Fig. 2. Integrated Control Architecture (ICA) 

2.2 Objectives and State of the Art 

The main objectives of a  Functional Control Architecture for a  planetary rover are: 

Generality: To be a  general framework to allow  a better understanding  of all the functions needed 
to achieve  the  design  requirements  of  a control system, in order to fulfill a specific mission (see 
Table l), independent of operations and  implementation  features  (control  hardware, control 
software, and  human intervention), 

0 Inter-Element Cooperation: To support the interaction among space elements (several planetary 
rovers,  robotic  arms, orbiters, and landers) taking  part  of  a mission, identifying what  kind of 
information or commands are exchanged among such elements. w: To unify  in  the same framework all the possible implementations of Rover Control 
Systems. 
Flexibility: To allow  assessment  of the capabilities and  performances for each control 

implementation as well  as  for different configurations of cooperation among the control 
architectures  of  the elements taking  part  of  a mission. 
Robustness: To allow  robustness  both  in  the  presence of uncertainties about the knowledge of  the 
environment, and in  the  presence  of  inaccuracies  and limited performances in rover, sensors, and 
actuators, 
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Ouickness: To allow execution in  real  time, 
0 Savings: To achieve low cost 

Mission  Commands  Definition  Parameters 
INSPECT-AREA Build a topographic  map of the 

environment. 

SURVEY-SPACECRAFT1 
ROVER 

RELAY-DATA 

INSTALL-INSTRUMENT 

COLLECT-SAMPLE 

RETRIEVE-ITEM 

Survey lander, parachutes (Mars), 
aeroshell  shield (Mars) or other rover 

Relay  data  from  on-ground  space 
element (e.g. rover or lander) to 
ground segment (e.g.  Earth) 
Deploy and install instruments. 

Collect,  retrieve or analyse soil or 
rock samples. 

Off loading of cargo items from 
lander 

<initial  position> 
<surface to inspect> 
<final  location> 

<spacecrafthover  location> 
<area to survey> 

<location  of  ground  space  element> 
<location of ground segment > 

<deployment  location> 
<type  of  instrument> 

<sample  location> 
<type of sample> 
<amount of sample> 
crendez-vous  point  to  return 
samples> 

<lander location> 
<type  of  item> 
<placement location> 

Table 1. Space Rover Mission Commands 

There are a great  number of approaches for the  design of planetary rover control architectures 
without a common definition of control functions and  terminology  [10][11][12][19].  Even  when 
each  mobile  robot  application  and scenario could  require specific control functions and interaction 
mechanisms  among  them, a common functional control architecture is of great interest for the sake 
of a better  understanding and assessment of capabilities. Also, a complete Functional Control 
Architecture for a future Long Range Autonomous Space Rover is mandatory to handle the control 
complexity  that  was  never  required  in  previous spacecrafts [24][26]. 

Three main  approaches for functional control architectures have been defined in the last ten years: 
hierarchical, behavioral, and a hybrid of both. 

Pure  Hierachical  Architectures. In this organization  scheme  based  on a hierarchy  of layers, decision 
malung  processes are present at each resolutiodabstraction level to either generate action commands 
to the  lower  adjacent  level or perceptual  information to the  upper one [ 101 [ 181 [ 191. 

Pure Behavioral  Architectures. The central idea of behavioral architectures is that a control system 
consists of the desired  external  manifestations or behaviors of the system. There is not any goal 
decomposition  at  execution  time. This is done in  the architecture design since goals do not change 
from one problem to the  next [ 1 11 [ 121. 

Hybrid  Architectures.  These  architectures try to combine hierarchical  and  behavioral  approaches. 
Hybrid  architectures are a consequence of either an evolution of  behavioral architectures or the 
definition of a new  architecture  taking the most  relevant  advantages of both approaches [2]  [16]. 
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Pure hierarchical architectures are good to define clearly all the control functions needed  but fail in 
real  time execution having too much  high level reasoning even  without dealing with all the 
uncertainties  and constraints of a  real  rover application. Pure behavioral architectures are good in 
real time execution reacting  rapidly with the environment without high level reasoning but fail both 
when  the intelligence required is high  and  in  a  very complex scenario. Hybrid architectures are the 
answer to our scenario and  several designs have  been done but  however all of them were  used  in 
simple scenarios. Our goal is to define a  hybrid control architecture that combine properly all the 
advantages  of control and  AI techniques for a Long Range Scientific Mars Rover working  in  a  very 

. complex planetary  rover exploration scenario. 

2.3 Mobile Robot  Control  Architecture  (MORCA) 

To accomplish all these objectives, the Mobile Robot Control Architecture (MORCA) [2]  was 
defined as a  general framework, mapping  well-known  approaches  from the literature [ 101 [ 1 13 [ 121 
[ 161 [ 181 [ 191. MORCA  proved  that  behavioral  and  hierarchical approaches are not  in conflict. The 
only difference is whether control functions are  used in execution or in preparation. 

For  the  design  of  a  new functional control architecture for a Long Range Autonomous Space Rover, 
we  use  the  top-down  task decomposition engineering approach followed in the hierarchical Mobile 
Robot  Control Architecture MORCA  [2] [5]. This decomposition of the problem into lower level 
functions together with an exhaustive definition of the commands and data among them, allows a 
better understanding, test and update of  a complex rover control architecture. The levels of  the 
MORCA  architecture  correspond to a subsequent refinement  of commands to the mobile robot, from 
highest level  mission commands via commands on navigation, piloting, wheel  motion coordination, 
to individual  wheel control commands. 

The sequence of different tasks or mobile robot  command levels has  been identified, increasing in 
complexity  and abstraction, as it is shown  in  the following table. 

M.R.command levels Mobile Robot  commands Similarity with human commands 
Degree 6 
(Mission  Comds) 

Degree 5 
(Navigation 
Commands) 

Degree 4 
(Piloting  Comds) 

Degree 3 
(Trajectory 
Commands) 

Degree 2 
(DeviceControl  Cmds) 

Degree 1 
( Control  Outputs) 

a)  Inspect  area 
b)  Collect  sample 

a) Go to  a  location 

a)  Stay  in  a  direction  until  event 
b) Follow/Reach  an  object  until 
event 

a)  Border/Follow  object 
b) Go straight  object 
c) Stay  in  direction 
e)  Reducefincrease  speed 

a)  Steering  Angle 
b)  Speed 

a) 5 Volts  to  Motor  1 
b) Switch  on  a  brake 

High  level  of  messages  between  two people 
(the  boss  to  his  employee) 

Commands  from  a  person,  in  an  unknown 
city  to  a  taxi  driver  to  go  to  a  specific 
address 

Commands  to  a  car  driver  to  reach  an 
address  expressed  by an occupant  who 
knows  how  to  go 

Driver  commands  to  a  learner 

Car  driver  control  actions 

Electrical  Signal  from  the  nervous  system  to 
muscles 

Table 2. Mobile Robot  Command levels. 
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Table 2 shows a  hierarchy  in mobile robot commands where all commands of degree i can be 
transformed into a  set  of commands of degree i - I .  The decomposition and the control of such 
commands are performed  by  a  set of functions contained  in  a control architecture. Because of the 
mentioned  hierarchy  in mobile robot commands, our approach for the definition of Mobile Robot 
Control Architecture (MORCA) also follows a  hierarchical structure, based on different layers. The 
more the layers are able to work  autonomously  (no  human  presence),  the  more complicated are the 
tasks which the rover achieve itself. 
MORCA is structured into a  hierarchy of functional layers where each layer is structured into three 
parallel functional branches  based  on  the concept of  feedback control [7] [ 171: 

Forward Control (FC). Responsible for activity decomposition, execution planning, control, and 
command dispatching. 
0 Nominal Feedback (NF). Functions for refinement  and update of a priori knowledge ("world 
models")  based  on  the actual, but essentially expected, evolution of the process and consequently 
formulation of controlled adjustments of  the  FC. 

Non-Nominal Feedback (NNF) takes care of the correct functioning of this layer, detecting and 
analysing  non-nominal situations. It contains functions for the monitoring of discrepancies between 
actual  and allowable states in both the FC and the NF functions, diagnosis of their origins, and 
generation of directives and constraints for FC. 

A Mission cwnmands Missan A 
Status of degree 6.  &,,,msnds 

\ /  
\ 

Task  Planning 

Feedback \ /  Feedback 

Non Nominal 

Task Control 

MISSION LAYER 
, \  

Navigation / \  
Senswial Navigation  Commands  Navigation 

Navi( 

Information staius of degree 5 Commands I% 
I 

I I 

Nominal Non Ncininal 

Feedback 

t 

Path 
/ 

1 %  
Feedback 

Path Control 
& 

I NAVIGATION LAYER T 
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~~ 
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Pibting 
lnformatbn ststus 

Pibimg ' Commands  Pibting \ Pibtir 
Repa 
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\ /  
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f Traiectorq 
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Trajectory 

Feedback - Sequence  Feedback 
Control 

Trajectory Commands 
Control f degree 3 

J \ 
/ \  

Trajectory 
Controllers \ J 

Commands 

Nan Nominal 
Sensor 
lnprt 

Nominal 
Sensor 
I n p u t  PILOTING  LAYER 

Commands Control 
, of degree 1 outputs 

MOBILE ROBOT 
Sensors and Acluaton 

Figure 1. Mobile Robot  Control  Architecture. 
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An example of the Forward Control activity decomposition and planning is given in the appendix A 
where:  navigation  nominal feedback updates  the  map  and localizes the mobile robot, destination, 
places  of interest, and path segments inside the  map;  navigation  non nominal feedback detects when 
the mobile robot gets lost, generates strategies to find references for localization, and deals with 
unexpected situations reported by the pilot; piloting nominal  feedback detects environment features, 
estimates trajectory status and  rover internal state, and provides world  model updates to navigation; 
and piloting non-nominal  feedback detects hazards, for example unexpected  rocks or loose sand, 
and  generates  the  needed  recovery strategies. Due to the  modulatity of the architecture in layers and 
functions, fast execution is possible using  parallel computation. 

A similar structure of MORCA  can  be  used for the control system of other elements, such as robotic 
arms  or spacecrafts, taking  part  of  the same mission. Also inside each element interaction among 
different S/Ss (e.g. motion, thermal,  and  power control) is supported. In this way,  MORCA also 
supports the interaction among control functions in different mission elements. each control 
architecture in ICA is based on MORCA as  will be explained next, 

2.4. Functional  Control  Architecture  for  a  Long  Range  Scientific  Mars  Rover 

A Long Range Mars Rover is a complex spacecraft containing a set of elements, such as a mobile 
platform,  manipulator, pointable cameras, and scientific instruments, where each of these elements 
has its own control system (see Figure 3). 
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In addition, as  a  regular spacecraft, each control system is divided into several subsystems, such as, 
locomotiodpropulsion, thermal, power, and telecommuniation (see Fig. 4). 

Figure 4. Spacecraft Control Subsytem 

Following  an ICA structure, a centralized mission control layer, called micro-Rover Commander for 
a  Mars  rover scenario, has to be  added to command  and  to coordinate all the  rover elements. 

Following the MORCA  and ICA design philosophy, first  an exhaustive definition of the commands 
and data transfer  among rover elements [l] [20] is required to define the Functional Control 
Architecture for a Long Range Scientific Mars Rover. Table 3 shows the set of Sojourner and  Rocky 
7 Body  Motion Commands as an example. 

Body Motion Control 

Sojourner 1 I Rocky 7 

Capture-Image-with-Camera  <c>  Pilot-update <x,y,z,theta> 
at-Exposure  <t>,  Return-Region-from i (in  panorama frame, degrees from 
(r1,cl) to (r2,c2) with  APID  <id> ; North) 

Go-to-Waypoint-at <x,y>  within <m> I Pilot-goto  <x,y>  (in panorama frame) 
Minutes Pilot-gotodirect cx,y> (in panorama 

Material-Adherence 
Move-Backward cn> Counts i Pilot-head ctheta,x> 
Move-Forward  <n> Counts ; (degrees from North, distance) 
Set-Parameter  <Maximum  squeeze  mode I Pilot-head-direct <theta,x> 

Set-Parameter  <Traverse cycle distance> = 
Turn-Left cn> Bams I 

Turn-Right  <n>  Bams 
Turn-to-Heading <h> 
Turn-Towards cx,y> 

I 
I frame) 

navigation> = <Value> i Pilot-face  <x,y>  (in panorama frame) 

<Value> I 
I 

I 
I 
I 
I 
I 
I 

Table 3. Sojourner and  Rocky 7 Body  Motion  Commands 
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Once  all  the  Commands  were  defined  for  each  element  control  system  and for its subsystem,  then  all 
the  control  functions  (see  Table 4) are identified  following  the  hierarchical  principle  of  MORCA. 

Micro- 
Rover 
Control 

Micro- 
Rover 
Commander 

Platform 
Control 

Manipulator 
Control 

Mast 
Control 
Payload 
Control 

r 
Locomotion 
Control 

Thermal 
Control 
Power  Control 
Telecom 
Control 

Navigation  Layer Path  Panning + 
Control 

Control 

Piloting Control Coordination 
Layer Level 

Body  Layer 

Planning + Wheel 

Planning + 

Wheel  Level Planning + 
Control 

Actuator & Sensor Planning + 
Level Control 

Actuator & Sensor  Level 

Actuator & Sensor  Level 
Actuator & Sensor  Level 

Task  Layer 
Action  Layer 

Planning + Control 

Actuator & Sensor  Level 
Actuator & Sensor  Level 

Planning + Control Action  Layer 
Planning + Control Task  Layer 

Actuator & Sensor  Level 
Planning + Control 

1 
Table 4. Control  Functions  for  a  Long  Range  Scientific  Mars  Rover 

However,  there are rover  element  control S/Ss (e.g.  mobile  platform  locomotion S/S) that are more 
complex  than  others  needing  a  higher  refinement of commands.  Here  again,  MORCA  design 
philosophy are succesfuly  applied. 

3. Design  of  the  Operational  Control  Architecture  for  a  Space  Long  Range  Science  Rover 

Once  the  needed  control  functions  and  interactions  among  them are defined  in the Functional 
Control  Architecture  an  ODerational  Control  Architecture2  defines  where all these control functions 
are  located  (either  on-board or on-ground)  to  achieve  the  desired  control  autonomy for a  space 
scenario.  An  Operational  Control  Architecture  also  defines extra operational  support  functions  (see 
Fig. 5). 

2 Notation: The two parallel lines for data store, discontinous line for syncronization signal and  arrow for data flow. 

Aleiandro Martin-Alvarez 19125 



* ,  Submitted to: Artificial Intelligence, Robotics, and Automation for Space ”i-SAIRAS 99”, Noordwijk, The Netherlands 

Figure 5. Operational Control 

3.1. Commands  and  Information  Transfer 

Commands  and information transfer are basically  designed  as single messages  and queues where last 
ones  require extra pointers, e.g. a waiting and a execution pointer. Two main  types  of queues have 
been implemented, FIFOs (First Input First Output) and LIFOs (Last Input First Output). The first 
type  was the one mostly  used and the last one was  mainly  used for non-nominal event 
communication. In addition, these queues support  Artificial Intelligence reasoning techniques based 
on queue manipulation. 

Figure 6 shows this inter-communication in a controllplanning module. The two parallel lines 
include the  name  of the information to transfer (e.g. Data and Commands Parameters) and its 
associated discontinous line is a signal or stimulus to represent an event (e.g. a Command). This 
information is stored  in FIFO queues  except the non-nominal  ones (Input 1.4 & Output  1.4)  that 
follow a LIFO structure. 

“Interaction with 
other element/device 
controllers. 

11 -KeP-$K!.’:. ... ......... .... . 
Input f.1 0°F ‘ * 

E Feedback 
To / from  Non  Nominal 

~~ 

Outout 1.3 InDul 

From-/ to higher  level 

Figure 6. Intercommunications  in a ControlPlanning Function 
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The complete set of on-board Control and  Operation  Support functions for a Space Long Range 
Science Rover [ 1][20] are given  in  the following table using  the  MORCA design philosophy. 

Operational 
Control 
Architecture 

Operation 

Module 
support 

Command  and 

Telemetry Management 
Mangement Telemetry 
Command 

Control  Operation  Supervisor 
Logistic  Module 
System  Administrator 

Management 

Micro-Rover  Control (see Table 4) 

Table 5.On-board Rover functions for the Operational Control Architecture 

3.2. Capabilities  needed  for  the  Operational  Control  Architecture  of  a  Space  Long  Range 
Science  Rover 

A highly  autonomous  rover is mandatory for Space Long Range Science Missions. With  more  on- 
board control functions there is a greater possibility that the mission  goals will be reached. However, 
on-board control functions (including sensors and actuators) can fail requiring external help. 
Therefore flexible placement  of  operation  support  and control functions are needed  between  the 
Ground  and Flight Segments to reconfigure the Operational Control Architecture. 

In  addition, this architecture reconfiguration is needed for different mission phases. For example, 
safety  is  the  main issue at the beginning of a space mission, placing most  of control functions on the 
ground  segment  with  highly  human intervention (human  on  the control loop). However, at  the end of 
the  mission,  more challenging and  highly autonomous rover tasks will be commanded having most 
of the control functions executing on-board. 

Architecture configuration is also needed to handle anomalies like software malfunctions or loss of 
communication, where  on-ground control functions are completely useless. Therefore, the  rover 
automatically  has to reconfigure its Operational Control Architecture in order to become  more 
autonomous  and find recovery strategies to establish communication to Earth. 

As a conclusion, a Space Long Range Science Rover must have the capability to receive high  and 
low  level  commands. 

For a spacecraft, and  then for a space rover, there are four major Operation Support Functions: 
Command  and  Telemetry  Management  (CTM); Control Operation Supervisor (COS); Logistic 
Module  (LM);  and System Administrator (SA),  as  shown  in Figure 7. 
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To Ground Segment  From  Ground  Segment 

Figure 7. Main  Operation Support Functions for a Spacecraft 
The Command  Management Module distributes the commands received from ground to the 
Telemetry  Management Module, LM, and SA. The Telemetry  Management Module handles the 
downlink of all the telemetry data accumulated  in its input buffer. It also generates a heartbeat, and 
establishes telecommunication signals to Earth. See Figure 8. 

Figure 8. Structure of the Command  and  Telemetry  Management 

The Logistic Module (LM) contains the rover clock and computer hardware supervisor. It sends 
clock signals to other modules, for example a wake up signal. System Administrator (SA) is in 
charge of  the file system  making sure that there is  enough computing resources available for the 
execution  of  operation  support  and control functions. 
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LM Data. 
Time & Date [ 

I 
Comd 

+ Cmd Parameters 

Fig. 9. Main Functions of the Logistic 
Module (LM) 

The Control Operation Supervisor (COS) is in charge of: resources  management  and  health care; 
distribution of the  received commands from CM to any control function checking they are consistent 
with the current  operation  mode;  reconfiguration  of Operational Control Architecture when  both 
anomalies occur like loss of communication to Earth and  wake up signal is received  when the rover 
was in “stand  by” (e.g. during the night). 

3.3 Design  using  Graphical  Programming,  Classic  Control  Concepts,  and  Artificial 
Intelligence  Concepts. 

The design of an  Operational Control Architecture for a Planetary Long Range Science Rover 
[1][23] needs  of a real-time framework for engineering control design dealing with the complexity 
of large projects, real-time software, event processing, feedback control, and interacting teams of 
programmers, engineers, managers, and  maintenance  personnel. Therefore we  use graphical 
programming for our design  promoting  understandability  and as a consequence the design is quicker 
to learn, faster to develop, easier to debug, and less costly to maintain. 

We  use  the  well-known classic control concepts of Finite State Machine, Dataflow Diagrams, and 
classic queue manipulation for the  design of the  whole architecture. Finite State Machines are used 
for event-driven reaction  and  Dataflow  Diagrams for synchronous cyclic data processing including 
the  implementation of AI behaviors. 

3.3.1. Guidelines for the  use  of Finite State Machines  and  Dataflow Diagrams 

An Operational Control Architecture must  be  designed  to  work  in  real time, that is, fast command 
execution  and  fast  reaction to events stablishing priorities among  them. It is also mandatory for 
inter-communication efficiency and  good controlability of the functioning of the  Operational 
Control  Architecture, to minimize the  number  of control functions working  in parallel, that is, to 
minimize  the  number  of Finite State Machines  and  Dataflow  processes  (both Operating System 
processes)  but still keeping  the  required  real  time  performance. Thus, it  was  found convenient to 
design a Standard Finite State Machine structure that group several control functions that  were 
already  defined  in  the  Functional Control Architecture. 

We group Planning, Control, or Dispatching functions together  with Nominal, Non-Nominal,  and 
External  Event  Handling functions for any architecture layer (see Figure 10). A subset of this 
structure is also used for Operation  support functions. 
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This grouping  was  selected  because these functions are exclusive, that is only one is requiered to 
work  at once and because this grouping contains the mechanisms that establishes the desired priority 
in their execution. For example, whenever a diagnosis and  recovery strategy generation function 
takes place only its execution is requiered at its layer, without considering the execution of  nominal 
planning  or  any  nominal control action. At the same time, a non-nominal event has  the  highest 
priority  in its layer canceling the execution of  any other control function in progress. 

A secondary advantage of this grouping is that all these control functions share the same inter- 
communication function to communicate with  other Finite State Machines either in  the same or 
different control layers via  the  already  mentioned  Queues. 

Figure 10. Standard Finite State Machine structure for Planning or Control Functions 

Dataflow  diagrams  are  used  in  the  Operational Control Architecture for continuos cycle sequences 
for example as  sequence  composed  of  nominal feedback (including sampled data feedback), 
planning, control, and  motor driver activation  (see Fig. 11). Sometimes a subset  of this whole 
sequence  is  only  required, for example standalone Nominal  Feedback functions that  can  run 
independently to detect  nominal events (e.g. a trajectory  final condition reached)  that communicates 
to a Finite State Machine via its NF queue. 
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activ.()/ disactiv.0 1 NF- CE-Config-X. 

"CFN-Cmd" 

Figure 1 1. Schematic DFE structure for a Rover Control Continuous Cycle Sequence 

Dataflow  Diagrams are also used for Non  Nominal Feedback monitoring, maybe sharing some 
components with the NF. This NNF monitoring  has  the capability to communicate a non-nominal 
event to a Finite State Machine, that is performing control or planning tasks, via its NNF Queue  (see 
Figure 12). 

activ.()/ disactiv.0 

I 
Figure  12. Schematic DFE Structure for a Non  Nominal  Feedback Monitoring Function. 

3.3.2.  Control Shell Tool 

Our  control  architecture  design  uses the commercial Control Shell Tool [8] because is compliaced 
with  our  requirements of graphical  programming  and  the  concepts  of Finite State Machines for 
event-driven  reaction  and  Dataflow  Diagrams for synchronous cyclic data processing. Control Shell 
also supports  object-oriented  modelling for the control design  and implementation. 
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In addition, Control Shell provides system configuration control for changing operating modes  and 
real-time matrix mathematics package (CSMat) useful for real time AI reasoning based  on queue 
manipulation  mandatory for a highly  Autonomous Long Range Science Rover. 

Figure 13 shows what a FSM looks like in the CS FSM  graphical editor. Boxes represent states and 
arrows the transition among states. A name  in quotes represent a stimulus, that is the event, and after 
the slash appears the transition function as  the  action after the event. The return codes of a transition 
function, used for decision making, select the next  stay to stay waiting for a new event. 

Figure 13. Example of a FSM  in the Control Shell FSM Graphical Editor 

Figure 14 shows how a DFE looks like in  the  CS  DFE  graphical editor. Boxes represent 
components, arrows  represent  the data flow connecting inputs and outputs (left and  right side 
respectively)  of  the components, each arrow  has associated the name of CSMat used a 
communication data, and the lines above of each component  represent component’s parameters 
mostly  in  CSMat  format (constants are allowed  as well). 
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4. Design  of  the  Implementation  Control  Architecture  for  a  Space  Long  Range  Science  Rover 

Once the  Operational Control Architecture defines the location (on-board  and on-ground) of control 
and  operation control functions, Implementation Control Architecture, defines how to implement 
them (software, hardware, or human intervention). The well  known software architecture in the 
computing science community, is only the software side of a Implementation Control Architecture. 

For the design  of this Control Architecture, we  used  the  mentioned Control Shell tool, that  using 
Object  Oriented  Programming templates, generates the C++  based structure (declaration of functions 
and input and output parameters) for each piece of code both for DFE components and  FSM 
transition functions. 

For our applications, we  use the VxWorks  Operating System running  on top of a VME chassis. 

5. Experimental  Results 

5.1 Rocky 7. 
The JPL-NASA micro-rover Rocky 7 [21] was 
used as breadboard for Control Architecture of 
a Long Range Autonomous Space Rover. 
Rocky 7 (see Fig. 15) is a research micro-rover 
used to demonstrate new  technology concepts 
for use  in a long range (>1 Km) traversal 
across Mars, scheduled for early in  the  next 
decade. Its locomotion is a modified six  wheel 
rockerhogey similar to Sojourner (NASA Path 
Finder mission). 

Its main features are: 1) size: 60 x 40 x 33 cm; 
2)  mass: 15.7 kg; 3) power: rechargeable 
NiCad  batteries  and Si solar panel;  4) 
computer: 3U  VME, 68060 CPU, 100 MIPS; 
5) Science Payload: a selection of  IR 
reflectance spectrometer, color filter stereo 
imager, multispectral close-up imager, and 
Mossbauer spectrometer; 5) 4 DoF Arm; and 
6 )  a camera Mast able to deploy  itself 1.4m 
above the ground. 

Figure 15.  JPL-NASA  Micro-Rover  Rocky 7 
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5.2 Experimental  results  with  Rocky 7 Technological  Micro-Rover 

Following MORCA  and ICA principles, a full control system for a Long Range Autonomous Mars 
Rover  has  been designed using the graphical editors of Control Shell. As a first implementation step, 
a distributed task execution and a fully autonomous piloting layer have been implemented. The 
distributed task execution consists that  both the stereo camera mast, mobile platform, and robotic 
arm independently execute and handle its own  command  queues  and the rover commander 
coordinates all of them. The fully autonomous piloting layer achieves continuous driving without 
stops for obstacle detection or the  planning of a new  path segment. Also some operation support 
functions, as  command management, have been  implemented simulating a "real" space mission. 

In the testing scenario, first the camera mast  is deploied taking  pictures and later a ground segment 
operator uses  his  knowledge  about  the  rover environment and position, and the desired destination, 
to generate a path consisting of a set  of path segments (see Appendix A for a complete example), 
being the operator supported  with a path planner tool. The last task is when  that the robotic arm 
takes a sample in the desired destination. In our testing scenario, navigation  path planning is done 
off-line, by creating a set  of consecutive path segments with  the parameters: motion direction 
(forward  or  backward), cruise speed, final condition, final condition accuracy, and dispatching mode 
(syncronous  or asyncronous), and stop mode after its execution. 

The execution  of four path segments are shown  in  the Figure 16, where the first two path segments 
(from (0,O) to (3,2) meters  and  from (3,2) to (5,2) meters respectively) consist in: high and  slow 
speed  forward  motion respectively, the third one (from (5,2) to (4,3)  meters)  in  low speed backward 
motion,  and the last path  segment  (from  (4,3) to (4,2.8)  meters)  in order to face the sample to 
observe consists in a very  slow  forward  motion. 

0.4 tn/div Offset - 2.5 

.................................. . . . .  . . . .  ..... ..... . . . .  . . . . .  . . .  ... . . . . .  . .  .,. : \ :  : 
: ,? ; 

.,. ., .,. ..,. .,. . I .  ../ .\ 4-  

- 
Figure  16.  Plot  in  Real-Time  of the Rocky 7 Trajectory  on the JPE 

Mars  Yard  using Control Shell SetScope Tool 

Aleiandro  Martin-Alvarez / 18/25 



I t  
.. Submitted  to:  Artificial  Intelligence,  Robotics, and  Automation  for  Space  "i-SAIRAS 99", Noordwijk,  The  Netherlands 

Once the execution of all these path segments are executed autonomously then  the  rover reports back 
to the operator that  his  command  was  successfully executed. However if the rover cannot find a 
recovery  strategy for a non-nominal situation then the operator will  be asked for help  and the control 
operation  mode changes in such a way that some control functions switch from software or hardware 
to operator in the loop. 

In detail, the  testing of the autonomous piloting layer consists of 

The ground  segment operator generates a sequence of tasks for the camera mast, rover piloting, 
and  robotic arm, and  uplinks  it via ethernet (simulating DSN). 

An ethernet input control Shell component reads all the  received tasks from a VxWork  socket  and 
traslates them into Control Shell format  (CSMat). Later this ethernet input component introduces all 
these tasks to the  input data queue of  the  Command  Management FSM sending a stimulus to 
communicate that  ground data is ready to process. 

The Command  Management FSM interprets the input data, and  in this case, send it to the Control 
Operation Supervisor function (COS), see Fig. 7, that does its own interpretation as  well. The 
Control  Operation Supervisor function dispatches a block of commands sequentially to the  Mast 
Control  (MC), to the Body  Motion Control FSM  (BMC), and to the Robotic Arm Control. See Table 
4. 
0 For each  path segment, the Body  Motion Control FSM  will activate several control functions as 
Control Shell (CS) components that  must  work  in  real  time. These control functions are: 

Path  segment control consisting of a set of consecutive components for both the piloting 
nominal  feedback  (encoder  and angular rate sensor reading  and  position estimation) and piloting 
forward control functions based  on  the  behavioral  approach  of  having several controllers working 
in  parallel  (e.g. a speed  and steering controller components) fusioning their outputs (behavior 
fusion component). See Figures 11 and  12. 
0 Body  Motion Control will also command to the Wheel Coordination Planning and  Wheel 
Motion Control Layers to activate the inverse kinematic, for Ackerman steering, and wheel  motor 
driver components respectively. 
0 Piloting  Nominal  Feedback of Final Condition consists in a component to detect a Cartesian 
point  was  reached (see Fig. 12). 
0 Piloting Non  Nominal Path segment  monitoring  based  on  an optical vision system [22] 
consisting of a set of consecutive components: camera data readers, warpers, Laplacian filters, 
stereo matching,  range  and elevation map  generators,  and obstacle detector (see Fig. 17). 
0 Piloting Non  Nominal  Feedback of Rover attitude monitoring consisting of a set  of consecutive 
components:  bogies angle data readers,  filter,  and  dangerous attitude detector. 
0 Piloting Non  Nominal Feedback of Rover  motor  monitoring consisting of a set of consecutive 
components:  motor current reading, current filter, and  max current detector. 

0 The Final  Condition component will  send a message to the BMC nominal  feedback queue (see 
Figures 10 and  12)  when  the  desired  Cartesian coordinate is reached.  Then the BMC  will  ask for next 
path  segment to COS. If syncronous  communiation  was  selected  then  COS  will send next  path 
segment if any, otherwise the  whole  path is executed communicating of this fact to the Telemetry 
Manager  FSM  that  will downlink this event to the  ground operator. 
0 The obstacle  and attitude detector, and  max  current detector will send a message to the  non 
nominal  queues of the BMC  and  WMC  FSMs  respectively  (see Fig. 10 and  12)  when its 
correspondent failure is detected. Hazard  recovery strategies will  be generated. However  if  no 
recovery  strategy is possible will  downlink this event to the  ground operator asking for help. 
0 Similar control functions to the BMC are activated  for  the stereo vision  mast  and robotic arm. 
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Figure 17. Range Map,  Vision Camera Images, and Elevation Map respectively from the Rocky 7 
Piloting Non-Nominal Path Segment Monitoring 

6. Conclusions  and  Future  Work 

A  full  design  of  a complete control architecture for a Long Range Science Rover Control System 
have been  proved  and  the implementation of  an autonomous piloting have been shown using 
successfully  the  JPL-NASA  micro-rover  Rocky 7. 

A  sequence  of three Control Architectures (Functional, Operational, and Implementation Control 
Architectures)  have  been  presented  as  a good methodology to design a complete control architecture 
for a  complex Space Rover. 

An Integrated Control Architecture (ICA)  was efficiently shown for inter-element cooperation where 
the  motion control system of each element is based  on the Mobile Robot Control Architecture 
(MORCA) structure. 

Space Rover Control Architectures have been  successfully  shown  that  they are consistent with 
MORCA  which  has extensively been  used to define the control architecture for planetary mobile 
robots, defining  a  hierarchy  of control layers and the internal structure for each layer (Nominal 
Feedback,  Forward Control, and  Non  Nominal Feedback). 

As a  gained experience, a  pure  hierarchical architecture without  Non-nominal  Feedback 
(contingency detection and  recovery) are the optimum ones. However, due to all the  high 
uncertainties  and inaccuracies in a space rover  and  the  mission itself when planning and control are 
done,  non-nominal  feedback is needed to take care of  the functioning of each control layer and 
recover  the  rover from dangerous situations. 

ih'. 
,..A 

% A  combination of reactive and planning techniques together have  been  presented for the 
I;, implementation of the piloting control subsystem to fulfil the severe control requirements of  a space 1"' , 

mission  as to handle hgh  level of uncertainty  and  inaccuracies. 

An autonomous piloting layer has been  implemented to successfully achieve  in  real time continuous 
driving, detecting and  handling  non-nominal situations. This real  time  operation  had to deal with  the 
complexity  of  having  numerous  and  powerful control functions with different operation  modes  like: 
cyclic processing  of  a  sequence,  parallel execution at  convenient sample rates, and event-driven 
interactions for syncronization, and detection of nominal or non-nominal situations. 

,. 
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APPENDICES 

APPENDIX 1 
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Figure 18. Example of  Execution of Mission Cmds 

A)  Mission  Command:  "COLLECT-SAMPLE <sample A>" 
B) Navigation  Command:  "GO-TO-LOCATION  <sample A>" 
C)  Piloting  Commands: 

C.1) MOVE-TO <Final condition: cardinal point PI>; <Motion  reference: cardinal point P1> 

C.2) REACH  <Final condition: cardinal point P2 & external object: landmark-1,  in front, distance 

C.3) BORDER <Final condition: cardinal point P3> <Motion  reference: external object: 

C.4) MOVE-TO d;inal condition: cardinal point  P4 & external object: sample A,  in front, 

<Motion direction: forward> 

d2> <Motion  reference: external object landmark-l> <Motion direction: forward> 

landmark-1,  on  the right, distance d3> <Motion direction: forward> 

distance d4> <Motion  reference:  cardinal  point  P4>  <Motion direction: forward> 
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